Frameshift indels introduced by genome editing can lead to in-frame exon skipping
نویسندگان
چکیده
The introduction of frameshift indels by genome editing has emerged as a powerful technique to study the functions of uncharacterized genes in cell lines and model organisms. Such mutations should lead to mRNA degradation owing to nonsense-mediated mRNA decay or the production of severely truncated proteins. Here, we show that frameshift indels engineered by genome editing can also lead to skipping of "multiple of three nucleotides" exons. Such splicing events result in in-frame mRNA that may encode fully or partially functional proteins. We also characterize a segregating nonsense variant (rs2273865) located in a "multiple of three nucleotides" exon of LGALS8 that increases exon skipping in human erythroblast samples. Our results highlight the potentially frequent contribution of exonic splicing regulatory elements and are important for the interpretation of negative results in genome editing experiments. Moreover, they may contribute to a better annotation of loss-of-function mutations in the human genome.
منابع مشابه
Efficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملMultiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion.
Deletion and duplication of one or more exons in the dystrophin gene account for 70% of patients with Duchenne and Becker muscular dystrophies (DMD and BMD) and other allelic clinical entities such as raised serum creatine kinase and X linked dilated cardiomyopathy (XLDC). The severity of the resulting phenotype can be generally predicted by whether these mutations lead to translation frame dis...
متن کاملONLINE MUTATION REPORT Multiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion
Deletion and duplication of one or more exons in the dystrophin gene account for 70% of patients with Duchenne and Becker muscular dystrophies (DMD and BMD) and other allelic clinical entities such as raised serum creatine kinase and X linked dilated cardiomyopathy (XLDC). The severity of the resulting phenotype can be generally predicted by whether these mutations lead to translation frame dis...
متن کاملSequence Context of Indel Mutations and Their Effect on Protein Evolution in a Bacterial Endosymbiont
Indel mutations play key roles in genome and protein evolution, yet we lack a comprehensive understanding of how indels impact evolutionary processes. Genome-wide analyses enabled by next-generation sequencing can clarify the context and effect of indels, thereby integrating a more detailed consideration of indels with our knowledge of nucleotide substitutions. To this end, we sequenced Blochma...
متن کاملRestoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice.
Duchenne muscular dystrophy (DMD) is a hereditary disease caused by mutations that disrupt the dystrophin mRNA reading frame. In some cases, forced exclusion (skipping) of a single exon can restore the reading frame, giving rise to a shorter, but still functional, protein. In this study, we constructed lentiviral vectors expressing antisense oligonucleotides in order to induce an efficient exon...
متن کامل